martes, 9 de junio de 2015

Predecibilidad

Predicción tiene por etimología el latín pre+dicere, esto es, “decir antes”. No se trata sólo de “decir antes”, sino de “decirlo bien”, o sea, acertar; también, hacerlo con un plazo suficiente para poder tomar las medidas que se crean oportunas, y además tener una idea de hasta cuándo es posible predecir el futuro con cierto éxito.
Cuando se efectúa una predicción, se está estimando un valor futuro de alguna variable que se considere representativa de una cierta situación.
También se pueden hacer predicciones espaciales, como la ubicación, movilidad e intensidad local de fenómenos extremos, caso por ejemplo de los huracanes y tormentas tropicales
Normalmente ambos tipos de predicción están ligados y se realizan a la vez, como lo prueban los productos que ofrecen las s grandes agencias e institutos de Meteorología y Climatología.
Pueden construirse de modos muy diversos, de algunos de los cuales nos ocuparemos en este trabajo, y su bondad se mide -como es natural- por el porcentaje de aciertos en situaciones del pasado predichas con igual técnica. Las bases de registros disponibles hoy día permiten realizar experimentos de predecibilidad con datos pasados y simular situaciones ya conocidas mediante diversas técnicas, estudiando y comparando los resultados.

CAOS

 
Teoría del caos es la denominación popular de la rama de las matemáticas, la física y otras ciencias que trata ciertos tipos de sistemas dinámicos muy sensibles a las variaciones en las condiciones iniciales. Pequeñas variaciones en dichas condiciones iniciales pueden implicar grandes diferencias en el comportamiento futuro; complicando la predicción a largo plazo. Esto sucede aunque estos sistemas son en rigor determinismos  es decir; su comportamiento puede ser completamente determinado conociendo sus condiciones iniciales.
Los sistemas dinámicos se pueden clasificar básicamente en:
Estables, Inestables, Caóticos.
Un sistema estable tiende a lo largo del tiempo a un punto, u órbita, según su dimensión (a tractor o sumidero). Un sistema inestable se escapa de los atractores. Y un sistema caótico manifiesta los dos comportamientos. Por un lado, existe un a tractor por el que el sistema se ve atraído, pero a la vez, hay "fuerzas" que lo alejan de éste. De esa manera, el sistema permanece confinado en una zona de su espacio de estados, pero sin tender a un a tractor fijo.
A tractores extraños
La mayoría de los tipos de movimientos mencionados en la teoría anterior suceden alrededor de a tractores muy simples, tales como puntos y curvas circulares llamadas ciclos límite. En cambio, el movimiento caótico está ligado a lo que se conoce como a tractores extraños, que pueden llegar a tener una enorme complejidad como, por ejemplo, el modelo tridimensional del sistema climático de Lorenz, que lleva al famoso a tractor de Lorenz conocidos, no sólo porque fue uno de los primeros, sino también porque es uno de los más complejos y peculiares, pues desenvuelve una forma muy peculiar más bien parecida a las alas de una mariposa.
EFECTO MARIPOSA La idea de la que parte la Teoría del Caos es simple: en determinados sistemas naturales, pequeños cambios en las condiciones iniciales conducen a enormes discrepancias en los resultados. Este principio suele llamarse efecto mariposa debido a que, en meteorología, la naturaleza no lineal de la atmósfera ha hecho afirmar que es posible que el aleteo de una mariposa en determinado lugar y momento, pueda ser la causa de un terrible huracán varios meses más tarde en la otra punta del globo.
 
 
Cuanto

En Física es la cantidad elemental de energía proporcional a la frecuencia de la radiación a la que pertenece.

Para la física clásica, un oscilador de cierta frecuencia podía emitir cualquier parte de su cantidad total de energía sin importar su valor. En 1900, Max Planck, para justificar el espectro de emisión de un cuerpo negro, enunció su hipótesis según la cual el contenido energético de un oscilador puede ser sólo un múltiplo entero de la magnitud hf, a la que se denomina cuanto de energía, y en donde f es la frecuencia de su vibración y h la constante de Planck igual a 6,62 · 10-34 Js. En realidad, los cuantos o unidades de radiación son tan pequeños que la radiación nos parece continua.

Einstein, en 1905, explicó el efecto fotoeléctrico utilizando la teoría de los cuantos, admitiendo que la luz se traslada por el espacio en forma de cuantos. A este cuanto de radiación se le dio posteriormente el nombre de fotón.

Relatividad

Teoría desarrollada a principios del siglo XX, que originalmente pretendía explicar ciertas anomalías en el concepto de movimiento relativo, pero que en su evolución se ha convertido en una de las teorías básicas más importantes en las ciencias físicas (véase Física). Esta teoría, desarrollada fundamentalmente por Albert Einstein, fue la base para que los físicos demostraran la unidad esencial de la materia y la energía, el espacio y el tiempo, y la equivalencia entre las fuerzas de la gravitación y los efectos de la aceleración de un sistema.


 


 


TEORÍA DE LA RELATIVIDAD ESPECIAL

En 1905, Einstein publicó el primero de dos importantes artículos sobre la teoría de la relatividad, en el que eliminaba el problema del movimiento absoluto negando su existencia. Según Einstein, ningún objeto del Universo se distingue por proporcionar un marco de referencia absoluto en reposo en relación al espacio. Cualquier objeto (por ejemplo, el centro del Sistema Solar) proporciona un sistema de referencia igualmente válido, y el movimiento de cualquier objeto puede referirse a ese sistema. Así, es igual de correcto afirmar que el tren se desplaza respecto a la estación como que la estación se desplaza respecto al tren. Este ejemplo no es tan absurdo como parece a primera vista, porque la estación también se mueve debido al movimiento de la Tierra sobre su eje y a su rotación en torno al Sol. Según Einstein, todo el movimiento es relativo.

Ninguna de las premisas básicas de Einstein era revolucionaria; Newton ya había afirmado que “el reposo absoluto no puede determinarse a partir de la posición de los cuerpos en nuestras regiones”. Lo revolucionario era afirmar, como hizo Einstein, que la velocidad relativa de un rayo de luz respecto a cualquier observador es siempre la misma, aproximadamente unos 300.000 km/s. Aunque dos observadores se muevan a una velocidad de 160.000 km/s uno respecto al otro, si ambos miden la velocidad de un mismo rayo de luz, los dos determinarán que se desplaza a 300.000 km/s. Este resultado aparentemente anómalo quedaba demostrado en el experimento de Michelson-Morley. Según la física clásica, sólo uno de los dos observadores —como mucho— podía estar en reposo, mientras que el otro cometía un error de medida debido a la contracción de Lorentz-Fitzgerald experimentada por sus aparatos; según Einstein, ambos observadores tienen el mismo derecho a considerarse en reposo y ninguno de los dos comete un error de medida. Cada observador emplea un sistema de coordenadas como marco de referencia para sus medidas, y un sistema puede transformarse en el otro mediante una manipulación matemática. Las ecuaciones de esta transformación, conocidas como ecuaciones de transformación de Lorentz, fueron adoptadas por Einstein, aunque las interpretó de forma radicalmente nueva. La velocidad de la luz permanece invariante en cualquier transformación de coordenadas.

La hipótesis fundamental en la que se basaba la teoría de Einstein era la inexistencia del reposo absoluto en el Universo. Einstein postuló que dos observadores que se mueven a velocidad constante uno respecto de otro observarán unas leyes naturales idénticas. Sin embargo, uno de los dos podría percibir que dos hechos en estrellas distantes han ocurrido simultáneamente, mientras que el otro hallaría que uno ha ocurrido antes que otro; esta disparidad no es de hecho una objeción a la teoría de la relatividad porque según esta teoría, la simultaneidad no existe para acontecimientos distantes. En otras palabras, no es posible especificar de forma unívoca el momento en que ocurre un hecho sin una referencia al lugar donde ocurre. Toda partícula u objeto del Universo se describe mediante una llamada ‘línea del universo’, que traza su posición en el tiempo y el espacio. Cuando se cruzan dos o más líneas del universo, se produce un hecho o suceso. Si la línea del universo de una partícula no cruza ninguna otra línea del universo, no le ocurre nada, por lo que no es importante —ni tiene sentido— determinar la situación de la partícula en ningún instante determinado. La ‘distancia’ o ‘intervalo’ entre dos sucesos cualesquiera puede describirse con precisión mediante una combinación de intervalos espaciales y temporales, pero no mediante uno sólo. El espacio-tiempo de cuatro dimensiones (tres espaciales y una temporal) donde tienen lugar todos los sucesos del Universo se denomina continuo espacio-tiempo.

Todas las afirmaciones anteriores son consecuencias de la relatividad especial o restringida, nombre aplicado a la teoría desarrollada por Einstein en 1905 como resultado de su estudio de objetos que se mueven a velocidad constante uno respecto de otro.

.

 


TEORÍA DE LA RELATIVIDAD GENERAL

En 1915, Einstein desarrolló su teoría de la relatividad general, en la que consideraba objetos que se mueven de forma acelerada uno respecto a otro. Einstein desarrolló esta teoría para explicar contradicciones aparentes entre las leyes de la relatividad y la ley de la gravitación. Para resolver esos conflictos desarrolló un enfoque totalmente nuevo del concepto de gravedad, basado en el principio de equivalencia.

El principio de equivalencia afirma que las fuerzas producidas por la gravedad son totalmente equivalentes a las fuerzas producidas por la aceleración, por lo que en teoría es imposible distinguir entre fuerzas de gravitación y de aceleración mediante un experimento. La teoría de la relatividad especial implica que una persona situada en un vehículo cerrado no puede determinar mediante ningún experimento imaginable si está en reposo o en movimiento uniforme. La relatividad general implica que si el vehículo resulta acelerado o frenado, o toma una curva, el ocupante no puede afirmar si las fuerzas producidas se deben a la gravedad o son fuerzas de aceleración producidas al pisar el acelerador o el freno o al girar el vehículo bruscamente.

La aceleración se define como el cambio de velocidad por unidad de tiempo. Consideremos a un astronauta que está de pie en una nave estacionaria. Debido a la gravedad, sus pies presionan contra el suelo de la nave con una fuerza igual al peso de la persona, w. Si esa misma nave se encuentra en el espacio exterior, lejos de cualquier otro objeto y prácticamente no influida por la gravedad, el cosmonauta también se verá presionado contra el suelo si la nave acelera. Si la aceleración es de 9,8 m/s2 (la aceleración de la gravedad en la superficie terrestre), la fuerza con que el astronauta es presionado contra el suelo es de nuevo igual a w. Si no mira por la escotilla, el cosmonauta no tiene forma de saber si la nave está en reposo sobre la Tierra o está siendo acelerada en el espacio exterior. La fuerza debida a la aceleración no puede distinguirse en modo alguno de la fuerza debida a la gravedad. Einstein atribuye todas las fuerzas, tanto las gravitacionales como las asociadas convencionalmente a la aceleración, a los efectos de la aceleración. Así, cuando la nave está en reposo sobre la superficie terrestre, se ve atraída hacia el centro de la Tierra. Einstein afirma que este fenómeno de atracción es atribuible a una aceleración de la nave. En el espacio tridimensional, la nave se encuentra estacionaria, por lo que no experimenta aceleración; sin embargo, en el espacio-tiempo de cuatro dimensiones, la nave está moviéndose a lo largo de su línea del universo. Según Einstein, la línea del universo está curvada debido a la curvatura del continuo espacio-tiempo en la proximidad de la Tierra.

Así, la hipótesis de Newton de que todo objeto atrae a los demás objetos de forma directamente proporcional a su masa es sustituida por la hipótesis relativista de que el continuo está curvado en las proximidades de objetos masivos. La ley de la gravedad de Einstein afirma sencillamente que la línea del universo de todo objeto es una geodésica en el continuo. Una geodésica es la distancia más corta entre dos puntos, pero en el espacio curvado no es, normalmente, una línea recta. Del mismo modo, las geodésicas en la superficie terrestre son los círculos máximos, que no son líneas rectas en los mapas corrientes.

martes, 28 de abril de 2015

CORRIENTE ALTERNA

Se denomina corriente alterna a la corriente eléctrica en la que la magnitud y el sentido varían cíclicamente.
   La forma de oscilación de la corriente alterna más comúnmente utilizada es la oscilación senoidal con la que se consigue una transmisión más eficiente de la energía, a tal punto que al hablar de corriente alterna se sobrentiende que se refiere a la corriente alterna senoidal. La CA se refiere a la forma en la cual la electricidad llega a los hogares y a las industrias.


       Este tipo de corriente es producida por los alternadores y es la que se genera en las centrales eléctricas. La corriente que usamos en las viviendas es corriente alterna (enchufes).

   En este tipo de corriente la intensidad varia con el tiempo (número de electrones), además cambia de sentido de circulación a razón de 50 veces por segundo (frecuencia 50Hz). Según esto también la tensión generada entre los dos bornes (polos) varía con el tiempo en forma de onda senoidal (ver gráfica), no es constante. Veamos cómo es la gráfica de la tensión en corriente alterna.


       En el siguiente gráfico se muestra el voltaje (que es también alterno) y tenemos que la magnitud de éste varía primero hacia arriba y luego hacia abajo (de la misma forma en que se comporta la corriente) y nos da una forma de onda llamada: onda senoidal.

El voltaje varía continuamente, y para saber que voltaje tenemos en un momento específico, utilizamos la fórmula:

V = Vp x Seno (Θ), donde

- Vp = V pico es el valor máximo que obtiene la onda y
- Θ es una distancia angular y se mide en grados.

CIRCUITO R. L.
Un circuito RL es un circuito eléctrico que contiene una resistencia y una bobina en serie. Se dice que la bobina se opone transitoriamente al establecimiento de una corriente en el circuito.
    Para calcular la intensidad en los bordes de montaje se utiliza la formula siguiente:

      Donde:
       U   es la tensión en los bornes de montaje, en V;
        I    es la intensidad de corriente eléctrica en A;
        L   es la inductancia de la bobina en H;
        Rt es la resistencia total del circuito en Ω.

Circuito RC
Un circuito RC es un circuito compuesto de resistencias y condensadores alimentados por una fuente eléctrica.
Un circuito RC de primer orden está compuesto de un resistor y un condensador y es la forma más simple de un circuito RC.
Los circuitos RC pueden usarse para filtrar una señal, al bloquear ciertas frecuencias y dejar pasar otras. Los filtros RC más comunes son el filtro paso alto, filtro paso bajo, filtro paso banda, y el filtro elimina banda.

En la configuración de paso bajo la señal de salida del circuito se coge en bornes del condensador, estando esté conectado en serie con la resistencia. En cambio en la configuración de paso alto la tensión de salida es la caída de tensión en la resistencia.
Este mismo circuito tiene además una utilidad de regulación de tensión, y en tal caso se encuentran configuraciones en paralelo de ambos, la resistencia y el condensador, o alternativamente, como limitador de subidas y bajas bruscas de tensión con una configuración de ambos componentes en serie.
v  Un ejemplo de esto es el circuito Snubber.
Circuito RC en serie y sus aplicaciones
Se llama circuito RC a la combinación en serie de un capacitor y un resistor.
Dicho circuito puede representar cualquier conexión de resistores y capacitores cuyo equivalente sea un solo resistor en serie con un solo capacitor.
Carga de un circuito

En la figura se muestra un circuito RC conectado a una
fuente de voltaje continuo ε. El interruptor tiene como objetivo cargar y descargar al capacitor C.
El proceso inicia cuando el interruptor se conecta a la posición “a” en el tiempo t=0 [s] y se considera que el capacitor se encuentra descargado.
Aplicando ley de Kirchhoff a la malla.

carga de un circuito
En la figura se muestra un circuito RC conectado a una
fuente de voltaje continuo. El interruptor tiene como objetivo cargar y descargar al capacitor, al cerrar el interruptor  “a”.


CIRCUITO RLC
En electrodinámica un circuito RLC es un circuito lineal que contiene una resistencia eléctrica, una bobina (inductancia) y un condensador (capacitancia).
Existen dos tipos de circuitos RLC, en serie o en paralelo, según la interconexión de los tres tipos de componentes. El comportamiento de un circuito RLC se describen generalmente por una ecuación diferencial de segundo orden (en donde los circuitos RC o RL se comportan como circuitos de primer orden).
En la figura se muestra un circuito de corriente alterna que contiene una resistencia (resistor), un inductor y un capacitor conectados en serie. A este se le denomina circuito RLC en serie, por los elementos que lo constituyen y que estén conectados en serie. Cuando se conectan en paralelo reciben el nombre de circuito RLC en paralelo.


Cuando se desea conocer cual es el valor de la resistencia total en un circuito debido a la resistencia, al inductor y al capacitor, se determina su impedancia. Por definición: en un circuito de corriente alterna la impedancia (Z) es la oposición total a la corriente eléctrica producida por R, XL, y Xc. Matemáticamente Z se expresa como:

        
Z = √R2 + (XL - XC)2

Donde:
Z= impedancia del circuito expresada en Ohms.
R= resistencia debida al resistor de Ohms.
XL= reactancia inductiva medida en Ohms.
  Xc = reactancia capacitiva expresada en Ohms.

De acuerdo con la ley de Ohms para una corriente continua tenemos:

En el caso de una corriente alterna (CA) R se sustituye por Z

Donde:
I= intensidad de la corriente en un circuito de CA expresada en amperes (A).
V= fem o voltaje suministrado por el generador medido en volts (V).
Z= impedancia del circuito calculada en Ohms. 

       En un circuito en serie las relaciones entre R, XL, XC y su valor resultante Z (es decir la impedancia), se pueden representar en forma gráfica al considerar a las magnitudes anteriores como vectores.
       En la figura siguiente vemos lo siguiente: La resistencia R se representa por medio de un vector sobre el eje de las X, la reactancia inductiva XL es un vector en el eje positivo de las Y y la reactancia capacitiva XC es un vector negativo localizado sobre el mismo eje Y. El vector resultante de la reactancia X = XL-XC y la resistencia R originada por los alambres del circuito y el devanado de la inductancia, está representado por la impedancia Z.







       Como ya señalamos, cuando la capacitancia y la inductancia de un circuito de CA no tienen valores relativamente pequeños, producen diferencias de fase o retardos entre la corriente y el voltaje. Cuando la reactancia inductiva XL es mayor que la reactancia capacitiva XC, la corriente fluye con un desfasamiento (retraso) respecto al voltaje recibido. En caso contrario, cuando XC  es mayor  que  XL, la corriente fluye con un adelanto respecto al voltaje.
       Para determinar cuál es el valor del retraso o adelanto de la corriente respecto al voltaje, se determina el ángulo de fase θ (figura anterior), el cual se calcula con la siguiente expresión:
               Tan θ =X/R
                          
Donde θ = ángulo formado por los vectores Z y R.
               X = reactancia del circuito (X = XL-XC) expresado en Ohms (Ω).
                       R = resistencia total del circuito medida en Ohms (Ω).




 

LUZ

La luz es una forma de energía capaz de provocar cambios en los cuerpos. Así, por ejemplo, nuestra piel y la de muchos animales cambia de color cuando se expone a la luz solar. También es una importante fuente de energía para las plantas, que la utilizan para fabricarse el alimento.
 

Luz: una forma de energía. 

Gracias a ella podemos ver todo aquello que hay a nuestro alrededor. Hay cuerpos que producen y emiten su propia luz. Estos cuerpos reciben el nombre de fuentes luminosas. Hay fuentes luminosas naturales, que producen luz propia y se encuentran en la naturaleza, como el Sol, el fuego y algunos insectos como las luciérnagas, y fuentes luminosas artificiales, fabricadas por las personas, como la bombilla (ampolleta), las velas, las cerillas (fósforos) y los tubos fluorescentes.

Durante el día la luz del Sol nos ilumina, los rayos de luz que nos llegan del Sol son una forma más en que se manifiesta la energía, la cual puede ser utilizada por el hombre para su provecho. De noche, sin embargo, necesitamos otras fuentes de luz, por eso conectamos bombillas (ampolletas), usamos una linterna o encendemos una luz para poder ver.

Propagación de la luz

La luz emitida por una fuente luminosa es capaz de llegar a otros objetos e iluminarlos. Este recorrido de la luz, desde la fuente luminosa hasta los objetos, se denomina rayo luminoso.
 

El sol: fuente de luz y energía. 

Las características de la propagación de la luz son:

• La luz se propaga en línea recta. Por eso la luz deja de verse cuando se interpone un cuerpo entre el recorrido de la luz y la fuente luminosa.

• La luz se propaga en todas las direcciones. Esa es la razón por la cual el Sol ilumina todos los planetas del sistema solar.

• La luz se propaga a gran velocidad.

 

Si encendemos una bombilla (ampolleta) en una habitación, inmediatamente llega la luz a cualquier rincón de la misma. Es decir, la luz se propaga en todas direcciones. A no ser que encuentren obstáculos en su camino, los rayos de luz van a todas partes y siempre en línea recta.

Además, en el mismo momento de encender la ampolleta vemos la luz. Esto ocurre porque la luz viaja desde la ampolleta hasta nosotros muy rápido. La luz se propaga en el aire a una gran velocidad. En un segundo recorre trescientos mil (300.000) kilómetros. Sin embargo, la velocidad de la luz no es la misma en todos los medios. Si viaja a través del agua, o de un cristal, lo hace más lentamente que por el aire.

 

Propiedades de la luz

Algunas propiedades de la luz, como el color, la intensidad, dependen del tipo de fuente luminosa que las emita. No obstante, existen otras propiedades, como la reflexión y la refracción, que son comunes a todos los tipos de luz.

 

La reflexión: la luz cambia de dirección

Se propaga a gran velocidad y en todas direcciones. 

Al situarnos ante un espejo, en una habitación iluminada, vemos nuestra imagen en él; es decir, nos vemos reflejados en el espejo. ¿A qué se debe esto? Los rayos de luz que entran por la ventana nos iluminan y llegan hasta el espejo. Al chocar con él cambian de dirección y vuelven hacia nosotros. Esto nos permite ver lo que iluminaban a su paso, es decir, nos vemos a nosotros mismos.

De la misma manera que una pelota choca contra una pared, rebota y cambia de dirección, los rayos luminosos, al chocar con una superficie como la del espejo, vuelven en una dirección distinta de la que llevaban. Este fenómeno se llama reflexión.

La reflexión de la luz es un cambio de dirección que experimenta la luz cuando choca contra un cuerpo.

La reflexión de la luz hace posible que veamos los objetos que no tienen luz propia.

Los espejos son cuerpos opacos, con una superficie lisa y pulida, capaces de reflejar la luz que reciben.

Hay dos tipos de espejos:

• Espejos planos, que producen imágenes de la misma forma y tamaño que el objeto que reflejan.

• Espejos esféricos, que producen imágenes de diferente tamaño al del objeto que reflejan.

Hay dos tipos de espejos esféricos:

Espejos cóncavos, como la parte interna de una cuchara. Si nos miramos en él, veremos nuestra imagen pequeña y hacia abajo, pero al aproximarnos mucho, la imagen aparece ampliada y hacia arriba. Por ejemplo, los espejos de maquillaje son cóncavos, porque permiten ver ampliados los detalles de la cara.

Espejos convexos, como la parte externa de una cuchara. Producen imágenes más pequeñas que el objeto que reflejan, y siempre hacia arriba. Los retrovisores de los coches son espejos convexos y nos ayudan a ver más carretera.

Refracción de la luz.
 

La refracción: la luz cambia de velocidad

La luz no se propaga del mismo modo en el aire que en otro medio. Al cambiar de medio, la luz cambia de dirección y de velocidad. Este fenómeno se llama refracción. Por eso decimos que la luz se ha refractado.

La refracción de la luz es el cambio de dirección que sufre la luz cuando pasa de un medio a otro diferente, por ejemplo cuando pasa del aire al agua.

La refracción de la luz sirve para ver los objetos con una dimensión diferente de la real. Ello se consigue con el uso de las lentes.

Las lentes son cuerpos transparentes que refractan la luz, y pueden ser:

Convergentes o Divergentes

Estos efectos de la refracción de la luz se utilizan en algunos aparatos, como la lupa y el microscopio, que nos permiten ver los objetos aumentados. Los rayos luminosos se refractan en unos cristales especiales, de que están provistos estos aparatos, y de este modo podemos ver los objetos a un tamaño mucho mayor del que tiene en realidad

martes, 10 de marzo de 2015


¿QUÉ ES EL SONIDO?

El sonido es una sensación, en el órgano del oído, producida por el movimiento ondulatorio en un medio elástico (normalmente el aire), debido a cambios rápidos de presión, generados por el movimiento vibratorio de un cuerpo sonoro.

ELEMENTOS O FACTORES PARA QUE EXISTA SONIDO

Una fuente de vibración mecánica, llamada fuente sonora.

 
 
Un medio elástico a través del cual se propague la perturbación, es decir la onda sonora (sonido).
Dicho medio puede ser el agua (líquidos), el aire (gases), y los metales (sólidos).
 
 
Según los fisiólogos para que exista sonido es necesaria la presencia de alguien que lo reciba, es decir un receptor u observador de sonido.
El tono de un sonido depende únicamente de su frecuencia, es decir, del número de oscilaciones por segundo. La altura de un sonido corresponde a nuestra percepción del mismo como más grave o más agudo.
Cuanto mayor sea la frecuencia, más agudo será el sonido. Esto puede comprobarse, por ejemplo, comparando el sonido obtenido al acercar un trozo de cartulina a una sierra de disco: cuando mayor sea  la velocidad de rotación del disco más alto será el sonido producido.
La intensidad de un sonido viene determinada por la amplitud del movimiento oscilatorio, subjetivamente, la intensidad de un sonido corresponde a nuestra percepción del mismo como más o menos fuerte. Cuando elevamos el volumen del radio a una música, o el volumen del televisor, lo que hacemos es aumentar la intensidad del sonido.
El timbre es la cualidad del sonido que nos permite distinguir entre dos sonidos de la misma intensidad y altura. Podemos así distinguir si una nota ha sido tocada por una trompeta o un violín. Esto se debe a que todo sonido musical es un sonido complejo que puede ser considerado como una superposición de sonidos simples.
Sonidos Sónicos: Todos aquellos sonidos que somos capaces de escuchar, se denominan sonidos sónicos
Estos sonidos tienen una frecuencia comprendida en el rango de 20htz a 20000htz (veinte a veinte mil hertz).
En otras palabras, son los sonidos audibles al ser humano. 
O infrasonidos, los cuales podemos definirlos como las vibraciones de presión cuya frecuencia es inferior a la que el oído humano puede percibir; es decir entre 0 y 20 Hz. Pero, debido a que la mayoría de los aparatos electroacústicos utilizan una frecuencia entre 20 y 30 Hz, consideraremos también como infrasonidos a toda vibración con una frecuencia por debajo de los 30 Hz.  
Dentro de la teoría de los infrasonidos se estudian las vibraciones de los líquidos y las de los gases pero no la de los sólidos. Éstas últimas, gracias a sus aplicaciones y su problemática, se han convertido en una ciencia aparte llamada vibraciones mecánicas.
Los ultrasonidos son aquellas ondas sonoras cuya frecuencia es superior al margen de audición humano, es decir, 20 Khz (20000 hz). Aproximadamente. Las frecuencias utilizadas en la práctica pueden llegar, incluso, a los gigahertzios. En cuanto a las longitudes de onda, éstas son del orden de centímetros para frecuencias bajas y del orden de micras para altas frecuencias.    

ONDAS
TRANSVERSALES  Y LONGITUDINALES
 
En Física, una onda consiste en la propagación de una perturbación de alguna propiedad de un medio, por ejemplo, densidad, presión, campo eléctrico o campo magnético, a través de dicho medio, implicando un transporte de energía sin transporte de materia. El medio perturbado puede ser de naturaleza diversa como aire, agua, un trozo de metal e, incluso, inmaterial como el vacío.
Se entiende por onda a aquella perturbación que transporta energía, y que se propaga en el tiempo y espacio. La onda tiene una vibración de forma ondulada que se inicia en un punto y continúa hasta que choca con otro cuerpo.
Las ondas mecánicas necesitan un medio material, ya sea elástico o deformable para poder viajar.
Todas las ondas tienen un comportamiento común bajo un número de situaciones estándar. Todas las ondas pueden experimentar las siguientes:
    Difracción. Ocurre cuando una onda al topar con el borde de un obstáculo deja de ir en línea recta para rodearlo.
    Interferencia. Ocurre cuando dos ondas se combinan al encontrarse en el mismo punto del espacio.
    Reflexión. Ocurre cuando una onda, al encontrarse con un nuevo medio que no puede atravesar, cambia de dirección.
    Refracción. Ocurre cuando una onda cambia de dirección al entrar en un nuevo medio en el que viaja a distinta velocidad.
    Onda de choque. Ocurre cuando varias ondas que viajan en un medio se superponen formando un cono.
 
 

Las ondas periódicas están caracterizadas por crestas o montes y valles, y usualmente son categorizadas como longitudinal o transversal.



Ondas transversales 

Las partículas por las que se transporta la onda se desplazan de manera perpendicular a la dirección en que la onda se propaga.

Por ejemplo, una onda en una cuerda se propaga horizontalmente a través del espacio, mientras que la propia cuerda (medio de la onda) se mueve hacia arriba y hacia abajo. Las ondas transversales se caracterizan por su frecuencia (número de crestas por segundo), amplitud (altura de la cresta de la onda) y longitud de onda (distancia entre dos crestas). Las ondas sísmicas son también ondas transversales.

ondas sísmicas
 
 
Un electrocardiograma (ECG) registra la actividad eléctrica del corazón.
 

Las ondas electromagnéticas son siempre transversales pero las ondas elásticas, dependiendo del medio en que se propaga, pueden ser de ambas clases. Por ejemplo el sonido es producido por variaciones de presión,   transversales y longitudinales en sólidos, pero solo longitudinales en líquidos y gases.

 

ONDAS LONGITUDINALES

En este caso, las moléculas se desplazan paralelamente a la dirección en que la onda viaja.

Onda longitudinal es aquella con vibraciones paralelas en la dirección de la propagación de las ondas; ejemplos incluyen ondas sonoras.

 

Una onda longitudinal es una onda en la que el movimiento del medio es paralelo a la dirección de la onda. Una onda de sonido es un ejemplo clásico de tal onda. Cuando haces sonar una guitarra, por ejemplo, la vibración de tus dedos hace que las moléculas cercanas en el aire vibren de un lado a otro horizontalmente. Esto desplaza las partículas cercanas, provocando un efecto dominó que propaga la onda a través del espacio. Puedes hacer una onda longitudinal visible sosteniendo un resorte de juguete entre tus manos y moviendo de un lado a otro una mano, haciendo que el resorte se expanda y contraiga horizontalmente.

 
 
Velocidad del sonido
En la tabla se muestra la velocidad de propagación del sonido en distintos medios a una temperatura determinada.
Polarización
Una onda es polarizada, si solo puede oscilar en una dirección. La polarización de una onda transversal describe la dirección de la oscilación, en el plano perpendicular a la dirección del viaje. Ondas longitudinales tales como ondas sonoras no exhiben polarización, porque para estas ondas la dirección de oscilación es a lo largo de la dirección de viaje. Una onda transversal, como la luz puede ser polarizada usando un filtro polarizador o al ser reflejada por un dieléctrico inclinado que puede ser un vidrio de ventana.